Publications

Export 463 results:
[ Author(Desc)] Title Type Year
Filters: Type is Journal Article  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Conde L, Vaquerizas JM, Santoyo J, et al. PupaSNP Finder: a web tool for finding SNPs with putative effect at transcriptional level. Nucleic Acids Res. 2004;32:W242-8. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15215388.
Conde L, Montaner D, Burguet-Castell J, Tarraga J, Al-Shahrour F, Dopazo J. Functional profiling and gene expression analysis of chromosomal copy number alterations. Bioinformation. 2007;1:432-5. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17597935.
Conde L, Montaner D, Burguet-Castell J, et al. ISACGH: a web-based environment for the analysis of Array CGH and gene expression which includes functional profiling. Nucleic Acids Res. 2007;35:W81-5. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17468499.
Conde L, Montaner D, Burguet-Castell J, Tárraga J, Al-Shahrour F, Dopazo J. Functional profiling and gene expression analysis of chromosomal copy number alterations. Bioinformation. 2007;1(10):432-5. doi:10.6026/97320630001432.
Conde L, Vaquerizas JM, Ferrer-Costa C, de la Cruz X, Orozco M, Dopazo J. PupasView: a visual tool for selecting suitable SNPs, with putative pathological effect in genes, for genotyping purposes. Nucleic Acids Res. 2005;33:W501-5. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15980522.
Conde L, Montaner D, Burguet-Castell J, et al. ISACGH: a web-based environment for the analysis of Array CGH and gene expression which includes functional profiling. Nucleic Acids Res. 2007;35(Web Server issue):W81-5. doi:10.1093/nar/gkm257.
Conde L, Vaquerizas JM, Dopazo H, et al. PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res. 2006;34:W621-5. Available at: http://nar.oxfordjournals.org/cgi/content/full/34/suppl_2/W621.
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674-6. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16081474.
Conesa A, Bro R, Garcia-Garcia F, et al. Direct functional assessment of the composite phenotype through multivariate projection strategies. Genomics. 2008;92(6):373-83. doi:10.1016/j.ygeno.2008.05.015.
Conesa A, Gotz S. Blast2GO: A Comprehensive Suite for Functional Analysis in Plant Genomics. Int J Plant Genomics. 2008;2008:619832. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18483572.
Conesa A, Jeenes D, Archer DB, van den Hondel CA, Punt PJ. Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl Environ Microbiol. 2002;68:846-51. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11823227.
Conesa A, Bro R, Garcia-Garcia F, et al. Direct functional assessment of the composite phenotype through multivariate projection strategies. Genomics. 2008;92:373-83. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18652888.
Conesa A, Punt PJ, van den Hondel CA. Fungal peroxidases: molecular aspects and applications. J Biotechnol. 2002;93:143-58. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11738721.
Conesa A, Punt PJ, van Luijk N, van den Hondel CA. The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol. 2001;33:155-71. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11495573.
Conesa A, Weelink G, van den Hondel CA, Punt PJ. C-terminal propeptide of the Caldariomyces fumago chloroperoxidase: an intramolecular chaperone?. FEBS Lett. 2001;503:117-20. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11513866.
Conesa A, Nueda MJ, Ferrer A, Talon M. maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics. 2006;22:1096-102. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16481333.
Conesa A, van De Velde F, van Rantwijk F, Sheldon RA, van den Hondel CA, Punt PJ. Expression of the Caldariomyces fumago chloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme. J Biol Chem. 2001;276:17635-40. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11278701.
Conesa-Zamora P, García-Solano J, Garcia-Garcia F, et al. Expression profiling shows differential molecular pathways and provides potential new diagnostic biomarkers for colorectal serrated adenocarcinoma. International journal of cancer. Journal international du cancer. 2012. doi:10.1002/ijc.27674.
Corrales P, Martin-Taboada M, Vivas-García Y, et al. microRNAs-mediated regulation of insulin signaling in white adipose tissue during aging: Role of caloric restriction. Aging Cell. 2023:e13919. doi:10.1111/acel.13919.
Corton M, Avila-Fernández A, Campello L, et al. Identification of the Photoreceptor Transcriptional Co-Repressor SAMD11 as Novel Cause of Autosomal Recessive Retinitis Pigmentosa. Sci Rep. 2016;6:35370. doi:10.1038/srep35370.
Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472-477. doi:10.1038/s41586-021-03767-x.
A second update on mapping the human genetic architecture of COVID-19. Nature. 2023;621(7977):E7-E26. doi:10.1038/s41586-023-06355-3.
Cruz R, de Almeida SDiz-, Heredia MLópez, et al. Novel genes and sex differences in COVID-19 severity. Hum Mol Genet. 2022. doi:10.1093/hmg/ddac132.
Cubuk C, Can FE, Peña-Chilet M, Dopazo J. Mechanistic Models of Signaling Pathways Reveal the Drug Action Mechanisms behind Gender-Specific Gene Expression for Cancer Treatments. Cells. 2020;9(7). doi:10.3390/cells9071579.
Cubuk C, Hidalgo MR, Amadoz A, et al. Gene Expression Integration into Pathway Modules Reveals a Pan-Cancer Metabolic Landscape. Cancer Res. 2018;78(21):6059-6072. doi:10.1158/0008-5472.CAN-17-2705.