Export 33 results:
Author [ Title] Type Year Filters: Author is Fatima Al-Shahrour [Clear All Filters]
Using Gene Ontology on genome-scale studies to find significant associations of biologically relevant terms to group of genes. In: Neural Networks for Signal Processing XIII. Neural Networks for Signal Processing XIII. New York, USA: IEEE Press; 2003:43-52.
. Use of GO Terms to Understand the Biological Significance of Microarray Differential Gene Expression Data. In: Microarray data analysis III. Microarray data analysis III. Kluwer Academic, K. F. Johnson and S. M. Lin; 2003:233-247.
. SNOW, a web-based tool for the statistical analysis of protein-protein interaction networks. Nucl. Acids Res. 2009;37:W109-114. doi:10.1093/nar/gkp402.
. PupaSNP Finder: a web tool for finding SNPs with putative effect at transcriptional level. Nucleic Acids Res. 2004;32:W242-8. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15215388.
Ontology-driven approaches to analyzing data in functional genomics. Methods Mol Biol. 2006;316:67-86. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16671401.
. Ontologies and functional genomics. In: Data analysis and visualisation in genomics and proteomics. Data analysis and visualisation in genomics and proteomics. Wiley, F. Azuaje and J. Dopazo; 2005:99-102.
. Next station in microarray data analysis: GEPAS. Nucleic Acids Res. 2006;34:W486-91. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16845056.
New Trends in the Analysis of Functional Genomic Data. In: Progress in Industrial Mathematics at ECMI 2006.Vol 12. Progress in Industrial Mathematics at ECMI 2006. Berlin: Springer; 2007:576-580. doi:10.1007/978-3-540-71992-2_94.
. New challenges in gene expression data analysis and the extended GEPAS. Nucleic Acids Res. 2004;32:W485-91. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15215434.
A large scale survey reveals that chromosomal copy-number alterations significantly affect gene modules involved in cancer initiation and progression. BMC Medical Genomics. 2011;4:37. doi:10.1186/1755-8794-4-37.
. GEPAS, an experiment-oriented pipeline for the analysis of microarray gene expression data. Nucleic Acids Res. 2005;33:W616-20. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15980548.
GEPAS, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Res. 2008;36:W308-14. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18508806.
GEPAS: A web-based resource for microarray gene expression data analysis. Nucleic Acids Res. 2003;31:3461-7. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12824345.
Gene set-based analysis of polymorphisms: finding pathways or biological processes associated to traits in genome-wide association studies. Nucl. Acids Res. 2009;37:W340-344. doi:10.1093/nar/gkp481.
A function-centric approach to the biological interpretation of microarray time-series. Genome Inform. 2006;17:57-66.
. Functional profiling of microarray experiments using text-mining derived bioentities. Bioinformatics. 2007;23:3098-9. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17855415.
. Functional profiling and gene expression analysis of chromosomal copy number alterations. Bioinformation. 2007;1:432-5. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17597935.
. Functional annotation of microarray experiments. In: Microarray Technology Through Applications. Microarray Technology Through Applications. New York, USA: Taylor & Francis, F. Falciani; 2007.
. From genes to functional classes in the study of biological systems. BMC Bioinformatics. 2007;8:114. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17407596.
FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics. 2004;20:578-80. Available at: http://bioinformatics.oxfordjournals.org/content/20/4/578.abstract.
. FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res. 2007;35:W91-6. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17478504.
Expression profiling of T-cell lymphomas differentiates peripheral and lymphoblastic lymphomas and defines survival related genes. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004;10:4971-82. Available at: http://clincancerres.aacrjournals.org/content/10/15/4971.long.
Exploring the antimicrobial action of a carbon monoxide-releasing compound through whole-genome transcription profiling of Escherichia coli. Microbiology. 2009;155:813-24. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19246752.
. Evidence for systems-level molecular mechanisms of tumorigenesis. BMC Genomics. 2007;8:185. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17584915.