Export 87 results:
Author Title Type [ Year
Filters: First Letter Of Last Name is W [Clear All Filters]
Transparency and reproducibility in artificial intelligence. Nature. 2020;586(7829):E14-E16. doi:10.1038/s41586-020-2766-y.
Transparency and reproducibility in artificial intelligence. Nature. 2020;586(7829):E14-E16. doi:10.1038/s41586-020-2766-y.
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun. 2019;10(1):2674. doi:10.1038/s41467-019-09799-2.
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun. 2019;10(1):2674. doi:10.1038/s41467-019-09799-2.
A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection. Nature Communications. 2018;9(1). doi:10.1038/s41467-018-06735-8.
Genomics of the origin and evolution of Citrus. Nature. 2018;554(7692):311-316. doi:10.1038/nature25447.
Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.). Plant Mol Biol. 2017;94(4-5):549-564. doi:10.1007/s11103-017-0625-5.
Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq). Nature Communications. 2016;7(1). doi:10.1038/ncomms12339.
Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq). Nature communications. 2016;7:12339. doi:10.1038/ncomms12339.
Integrating transcriptomic and metabolomic analysis to understand natural leaf senescence in sunflower. Plant Biotechnol J. 2016;14(2):719-34. doi:10.1111/pbi.12422.
Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nature methods. 2015. doi:10.1038/nmeth.3407.
Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nature methods. 2015. doi:10.1038/nmeth.3407.
Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nature methods. 2015. doi:10.1038/nmeth.3407.
Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nature methods. 2015. doi:10.1038/nmeth.3407.
Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nature methods. 2015. doi:10.1038/nmeth.3407.
Prediction of human population responses to toxic compounds by a collaborative competition. Nature biotechnology. 2015. doi:10.1038/nbt.3299.
Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nature communications. 2014;5:5125. doi:10.1038/ncomms6125.
Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nature communications. 2014;5:5125. doi:10.1038/ncomms6125.
Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics. BMC genomics. 2012;13:267. doi:10.1186/1471-2164-13-267.
Exploring the link between germline and somatic genetic alterations in breast carcinogenesis. PLoS One. 2010;5(11):e14078. doi:10.1371/journal.pone.0014078.
The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.
The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.
The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.
The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.
The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.