Export 221 results:
Author Title Type [ Year] Filters: Author is Dopazo, Joaquin [Clear All Filters]
Models of cell signaling uncover molecular mechanisms of high-risk neuroblastoma and predict disease outcome. Biol Direct. 2018;13(1):16. doi:10.1186/s13062-018-0219-4.
. The modular network structure of the mutational landscape of Acute Myeloid Leukemia. PLoS One. 2018;13(10):e0202926. doi:10.1371/journal.pone.0202926.
ATGC transcriptomics: a web-based application to integrate, explore and analyze de novo transcriptomic data. BMC Bioinformatics. 2017;18(1):121. doi:10.1186/s12859-017-1494-2.
Genomic expression differences between cutaneous cells from red hair color individuals and black hair color individuals based on bioinformatic analysis. Oncotarget. 2017;8(7):11589-11599. doi:10.18632/oncotarget.14140.
GGPS1 Mutation and Atypical Femoral Fractures with Bisphosphonates. N Engl J Med. 2017;376(18):1794-1795. doi:10.1056/NEJMc1612804. Roca-Ayats-2017NEJM - GGPS1 Mutation and Atypical Femoral Fractures with Bisphosphonates.pdf (214.03 KB)
Global Transcriptome Analysis of Primary Cerebrocortical Cells: Identification of Genes Regulated by Triiodothyronine in Specific Cell Types. Cereb Cortex. 2017;27(1):706-717. doi:10.1093/cercor/bhv273.
. Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes. BMC Syst Biol. 2017;11(1):110. doi:10.1186/s12918-017-0495-0.
. Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes. BMC Systems Biology. 2017;11(1). doi:10.1186/s12918-017-0495-0.
. HGVA: the Human Genome Variation Archive. Nucleic Acids Res. 2017;45(W1):W189-W194. doi:10.1093/nar/gkx445.
High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes. Oncotarget. 2017;8(3):5160-5178. doi:10.18632/oncotarget.14107.
. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.). Plant Mol Biol. 2017;94(4-5):549-564. doi:10.1007/s11103-017-0625-5.
Mutations in TRAPPC11 are associated with a congenital disorder of glycosylation. Hum Mutat. 2017;38(2):148-151. doi:10.1002/humu.23145.
Reference genome assessment from a population scale perspective: an accurate profile of variability and noise. Bioinformatics. 2017;33(22):3511-3517. doi:10.1093/bioinformatics/btx482.
VISMapper: ultra-fast exhaustive cartography of viral insertion sites for gene therapy. BMC Bioinformatics. 2017;18(1):421. doi:10.1186/s12859-017-1837-z.
Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome biology. 2017;18:48. doi:10.1186/s13059-017-1174-6.
Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biology. 2017;18(1). doi:10.1186/s13059-017-1174-6.
Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice. Stress (Amsterdam, Netherlands). 2016:1-11. doi:10.3109/10253890.2016.1151491.
Dysfunctional mitochondrial fission impairs cell reprogramming. Cell Cycle. 2016;15(23):3240-3250. doi:10.1080/15384101.2016.1241930.
Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq). Nature communications. 2016;7:12339. doi:10.1038/ncomms12339.
Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq). Nature Communications. 2016;7(1). doi:10.1038/ncomms12339.
HPG pore: an efficient and scalable framework for nanopore sequencing data. BMC Bioinformatics. 2016;17(1). doi:10.1186/s12859-016-0966-0.
. HPG pore: an efficient and scalable framework for nanopore sequencing data. BMC bioinformatics. 2016;17:107. doi:10.1186/s12859-016-0966-0.
. Improving the management of Inherited Retinal Dystrophies by targeted sequencing of a population-specific gene panel. Sci Rep. 2016;6:23910. doi:10.1038/srep23910.
Integrated gene set analysis for microRNA studies. Bioinformatics. 2016;32(18):2809-16. doi:10.1093/bioinformatics/btw334.
. Integrating transcriptomic and metabolomic analysis to understand natural leaf senescence in sunflower. Plant Biotechnol J. 2016;14(2):719-34. doi:10.1111/pbi.12422.