Publications

Export 478 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Aragues R, Sali A, Bonet J, Marti-Renom MA, Oliva B. Characterization of protein hubs by inferring interacting motifs from protein interactions. PLoS Comput Biol. 2007;3:1761-71. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17941705.
Arbiza L, Duchi S, Montaner D, et al. Selective pressures at a codon-level predict deleterious mutations in human disease genes. J Mol Biol. 2006;358:1390-404. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16584746.
Arbiza L, Patricio M, Dopazo H, Posada D. Genome-wide heterogeneity of nucleotide substitution model fit. Genome biology and evolution. 2011;3:896-908.
Arbiza L, Dopazo J, Dopazo H. Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome. PLoS Comput Biol. 2006;2:e38. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16683019.
Ariño J, Casamayor A, Pérez JPerez, et al. Assessing Differential Expression Measurements by Highly Parallel Pyrosequencing and DNA Microarrays: A Comparative Study. Omics : a journal of integrative biology. 2013. doi:10.1089/omi.2011.0065.
Avila-Fernandez A, Perez-Carro R, Corton M, et al. Whole-exome sequencing reveals ZNF408 as a new gene associated with autosomal recessive retinitis pigmentosa with vitreal alterations. Hum Mol Genet. 2015;24(14):4037-48. doi:10.1093/hmg/ddv140.
Avila-Fernandez A, Perez-Carro R, Corton M, et al. Whole Exome Sequencing Reveals ZNF408 as a New Gene Associated With Autosomal Recessive Retinitis Pigmentosa with Vitreal Alterations. Human molecular genetics. 2015;24:4037-4048. doi:10.1093/hmg/ddv140.
Azuaje F, Dopazo J, Wang H. Data and Predictive Model Integration: an Overview of Key Concepts, Problems and Solutions. In: Data analysis and visualisation in genomics and proteomics. Data analysis and visualisation in genomics and proteomics. Wiley, F. Azuaje and J. Dopazo; 2005.
Azuaje F, Al-Shahrour F, Dopazo J. Ontology-driven approaches to analyzing data in functional genomics. Methods Mol Biol. 2006;316:67-86. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16671401.
Azuaje F, Dopazo J. Data analysis and visualisation in genomics and proteomics. In: Wiley, F. Azuaje and J. Dopazo; 2005.
Azuaje F, Dopazo J. Integrative Data Analysis and Visualization: Introduction to Critical Problems, Goals and Challenges. In: Data analysis and visualisation in genomics and proteomics. Data analysis and visualisation in genomics and proteomics. Wiley, F. Azuaje and J. Dopazo; 2005:3-9.
B
Bañó-Polo M, Baldin F, Tamborero S, Marti-Renom MA, Mingarro I. N-glycosylation efficiency is determined by the distance to the C-terminus and the amino acid preceding an Asn-Ser-Thr sequon. Protein science : a publication of the Protein Society. 2011;20:179-86.
Barragán I, Borrego S, Pieras JIgnacio, et al. Mutation spectrum of EYS in Spanish patients with autosomal recessive retinitis pigmentosa. Hum Mutat. 2010;31(11):E1772-800. doi:10.1002/humu.21334.
Baù D, Sanyal A, Lajoie BR, et al. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nature structural & molecular biology. 2011;18:107-14.
Baù D, Marti-Renom MA. Structure determination of genomic domains by satisfaction of spatial restraints. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 2011;19:25-35.
Bediaga NG, Acha-Sagredo A, Guerra I, et al. DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res. 2010;12(5):R77. doi:10.1186/bcr2721.
Wilkinson MD, Senger M, Kawas E, et al. Interoperability with Moby 1.0--it's better than sharing your toothbrush!. Brief Bioinform. 2008;9(3):220-31. doi:10.1093/bib/bbn003.
Birmingham A, Selfors LM, Forster T, et al. Statistical methods for analysis of high-throughput RNA interference screens. Nature Methods. 2009;6:569 - 575. Available at: http://dx.doi.org/10.1038/nmeth.1351.
Bleda M, Medina I, Alonso R, De Maria A, Salavert F, Dopazo J. Inferring the regulatory network behind a gene expression experiment. Nucleic Acids Res. 2012;40(Web Server issue):W168-72. doi:10.1093/nar/gks573.
Bleda M, Tárraga J, De Maria A, et al. CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources. Nucleic acids research. 2012;40:W609-14. doi:10.1093/nar/gks575.
Bogliolo M, Pujol R, Aza-Carmona M, et al. Optimised molecular genetic diagnostics of Fanconi anaemia by whole exome sequencing and functional studies. J Med Genet. 2020;57(4):258-268. doi:10.1136/jmedgenet-2019-106249.
Bojic S, Falco MM, Stojkovic P, et al. Platform to study intracellular polystyrene nanoplastic pollution and clinical outcomes. Stem Cells. 2020;38(10):1321-1325. doi:10.1002/stem.3244.
Bonifaci N, Górski B, Masojć B, et al. Exploring the link between germline and somatic genetic alterations in breast carcinogenesis. PLoS One. 2010;5(11):e14078. doi:10.1371/journal.pone.0014078.
Bonifaci N, Berenguer A, Diez J, et al. Biological processes, properties and molecular wiring diagrams of candidate low-penetrance breast cancer susceptibility genes. BMC Med Genomics. 2008;1:62. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19094230.
Botton A, Galla G, Conesa A, Bachem C, Ramina A, Barcaccia G. Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology. BMC Genomics. 2008;9:347. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18652646.