@article {672, title = {Antibiotic resistance and metabolic profiles as functional biomarkers that accurately predict the geographic origin of city metagenomics samples.}, journal = {Biol Direct}, volume = {14}, year = {2019}, month = {2019 08 20}, pages = {15}, abstract = {

BACKGROUND: The availability of hundreds of city microbiome profiles allows the development of increasingly accurate predictors of the origin of a sample based on its microbiota composition. Typical microbiome studies involve the analysis of bacterial abundance profiles.

RESULTS: Here we use a transformation of the conventional bacterial strain or gene abundance profiles to functional profiles that account for bacterial metabolism and other cell functionalities. These profiles are used as features for city classification in a machine learning algorithm that allows the extraction of the most relevant features for the classification.

CONCLUSIONS: We demonstrate here that the use of functional profiles not only predict accurately the most likely origin of a sample but also to provide an interesting functional point of view of the biogeography of the microbiota. Interestingly, we show how cities can be classified based on the observed profile of antibiotic resistances.

REVIEWERS: Open peer review: Reviewed by Jin Zhuang Dou, Jing Zhou, Torsten Semmler and Eran Elhaik.

}, keywords = {biomarkers, Cities, Drug Resistance, Microbial, Machine Learning, Metabolome, Metagenome, metagenomics, Microbiota}, issn = {1745-6150}, doi = {10.1186/s13062-019-0246-9}, author = {Casimiro-Soriguer, Carlos S and Loucera, Carlos and Perez Florido, Javier and L{\'o}pez-L{\'o}pez, Daniel and Dopazo, Joaquin} } @article {474, title = {Using activation status of signaling pathways as mechanism-based biomarkers to predict drug sensitivity.}, journal = {Sci Rep}, volume = {5}, year = {2015}, month = {2015 Dec 18}, pages = {18494}, abstract = {

Many complex traits, as drug response, are associated with changes in biological pathways rather than being caused by single gene alterations. Here, a predictive framework is presented in which gene expression data are recoded into activity statuses of signal transduction circuits (sub-pathways within signaling pathways that connect receptor proteins to final effector proteins that trigger cell actions). Such activity values are used as features by a prediction algorithm which can efficiently predict a continuous variable such as the IC50 value. The main advantage of this prediction method is that the features selected by the predictor, the signaling circuits, are themselves rich-informative, mechanism-based biomarkers which provide insight into or drug molecular mechanisms of action (MoA).

}, keywords = {Algorithms, Antineoplastic Agents, biomarkers, Cell Line, Tumor, Cell Survival, gene expression, Humans, Lethal Dose 50, Neoplasms, Phosphorylation, Proteins, Signal Transduction}, issn = {2045-2322}, doi = {10.1038/srep18494}, author = {Amadoz, Alicia and Sebasti{\'a}n-Leon, Patricia and Vidal, Enrique and Salavert, Francisco and Dopazo, Joaquin} } @article {492, title = {Permanent cardiac sarcomere changes in a rabbit model of intrauterine growth restriction.}, journal = {PLoS One}, volume = {9}, year = {2014}, month = {2014}, pages = {e113067}, abstract = {

BACKGROUND: Intrauterine growth restriction (IUGR) induces fetal cardiac remodelling and dysfunction, which persists postnatally and may explain the link between low birth weight and increased cardiovascular mortality in adulthood. However, the cellular and molecular bases for these changes are still not well understood. We tested the hypothesis that IUGR is associated with structural and functional gene expression changes in the fetal sarcomere cytoarchitecture, which remain present in adulthood.

METHODS AND RESULTS: IUGR was induced in New Zealand pregnant rabbits by selective ligation of the utero-placental vessels. Fetal echocardiography demonstrated more globular hearts and signs of cardiac dysfunction in IUGR. Second harmonic generation microscopy (SHGM) showed shorter sarcomere length and shorter A-band and thick-thin filament interaction lengths, that were already present in utero and persisted at 70 postnatal days (adulthood). Sarcomeric M-band (GO: 0031430) functional term was over-represented in IUGR fetal hearts.

CONCLUSION: The results suggest that IUGR induces cardiac dysfunction and permanent changes on the sarcomere.

}, keywords = {Animals, biomarkers, Blood Pressure, Body Weight, Disease Models, Animal, Echocardiography, Female, Fetal Growth Retardation, Fetal Heart, Fetus, Gene Expression Profiling, Organ Size, Placenta, Pregnancy, Rabbits, Sarcomeres}, issn = {1932-6203}, doi = {10.1371/journal.pone.0113067}, author = {Torre, Iratxe and Gonz{\'a}lez-Tendero, Anna and Garc{\'\i}a-Ca{\~n}adilla, Patricia and Crispi, F{\'a}tima and Garcia-Garcia, Francisco and Bijnens, Bart and Iruretagoyena, Igor and Dopazo, Joaquin and Amat-Rold{\'a}n, Ivan and Gratac{\'o}s, Eduard} } @article {507, title = {Novel genes detected by transcriptional profiling from whole-blood cells in patients with early onset of acute coronary syndrome.}, journal = {Clin Chim Acta}, volume = {421}, year = {2013}, month = {2013 Jun 05}, pages = {184-90}, abstract = {

BACKGROUND: Genome-wide expression analysis using microarrays has been used as a research strategy to discovery new biomarkers and candidate genes for a number of diseases. We aim to find new biomarkers for the prediction of acute coronary syndrome (ACS) with a differentially expressed mRNA profiling approach using whole genomic expression analysis in a peripheral blood cell model from patients with early ACS.

METHODS AND RESULTS: This study was carried out in two phases. On phase 1 a restricted clinical criteria (ACS-Ph1, n=9 and CG-Ph1, n=6) was used in order to select potential mRNA biomarkers candidates. A subsequent phase 2 study was performed using selected phase 1 markers analyzed by RT-qPCR using a larger and independent casuistic (ACS-Ph2, n=74 and CG-Ph2, n=41). A total of 549 genes were found to be differentially expressed in the first 48 h after the ACS-Ph1. Technical and biological validation further confirmed that ALOX15, AREG, BCL2A1, BCL2L1, CA1, COX7B, ECHDC3, IL18R1, IRS2, KCNE1, MMP9, MYL4 and TREML4, are differentially expressed in both phases of this study.

CONCLUSIONS: Transcriptomic analysis by microarray technology demonstrated differential expression during a 48 h time course suggesting a potential use of some of these genes as biomarkers for very early stages of ACS, as well as for monitoring early cardiac ischemic recovery.

}, keywords = {Acute Coronary Syndrome, Acute-Phase Proteins, Adult, biomarkers, Blood Cells, Early Diagnosis, gene expression, Gene Expression Profiling, Humans, Male, Middle Aged, Oligonucleotide Array Sequence Analysis, RNA, Messenger, Transcriptome}, issn = {1873-3492}, doi = {10.1016/j.cca.2013.03.011}, author = {Silbiger, Vivian N and Luchessi, Andr{\'e} D and Hirata, Ros{\'a}rio D C and Lima-Neto, L{\'\i}dio G and Cavichioli, D{\'e}bora and Carracedo, {\'A}ngel and Bri{\'o}n, Maria and Dopazo, Joaquin and Garcia-Garcia, Francisco and Dos Santos, Elizabete S and Ramos, Rui F and Sampaio, Marcelo F and Armaganijan, Dikran and Sousa, Amanda G M R and Hirata, Mario H} } @article {572, title = {Hypoxia promotes efficient differentiation of human embryonic stem cells to functional endothelium.}, journal = {Stem Cells}, volume = {28}, year = {2010}, month = {2010 Mar 31}, pages = {407-18}, abstract = {

Early development of mammalian embryos occurs in an environment of relative hypoxia. Nevertheless, human embryonic stem cells (hESC), which are derived from the inner cell mass of blastocyst, are routinely cultured under the same atmospheric conditions (21\% O(2)) as somatic cells. We hypothesized that O(2) levels modulate gene expression and differentiation potential of hESC, and thus, we performed gene profiling of hESC maintained under normoxic or hypoxic (1\% or 5\% O(2)) conditions. Our analysis revealed that hypoxia downregulates expression of pluripotency markers in hESC but increases significantly the expression of genes associated with angio- and vasculogenesis including vascular endothelial growth factor and angiopoitein-like proteins. Consequently, we were able to efficiently differentiate hESC to functional endothelial cells (EC) by varying O(2) levels; after 24 hours at 5\% O(2), more than 50\% of cells were CD34+. Transplantation of resulting endothelial-like cells improved both systolic function and fractional shortening in a rodent model of myocardial infarction. Moreover, analysis of the infarcted zone revealed that transplanted EC reduced the area of fibrous scar tissue by 50\%. Thus, use of hypoxic conditions to specify the endothelial lineage suggests a novel strategy for cellular therapies aimed at repair of damaged vasculature in pathologies such as cerebral ischemia and myocardial infarction.

}, keywords = {Angiopoietin-1, Animals, biomarkers, Cell Culture Techniques, Cell Differentiation, Cell Hypoxia, Cell Transplantation, Cells, Cultured, Down-Regulation, Embryonic Stem Cells, Endothelial Cells, Gene Expression Profiling, Gene Expression Regulation, Humans, Male, Myocardial Infarction, Neovascularization, Physiologic, Oxygen, Pluripotent Stem Cells, Rats, Rats, Nude, Vascular Endothelial Growth Factor A}, issn = {1549-4918}, doi = {10.1002/stem.295}, author = {Prado-Lopez, Sonia and Conesa, Ana and Armi{\~n}{\'a}n, Ana and Mart{\'\i}nez-Losa, Magdalena and Escobedo-Lucea, Carmen and Gandia, Carolina and Tarazona, Sonia and Melguizo, Dario and Blesa, David and Montaner, David and Sanz-Gonz{\'a}lez, Silvia and Sep{\'u}lveda, Pilar and G{\"o}tz, Stefan and O{\textquoteright}Connor, Jos{\'e} Enrique and Moreno, Ruben and Dopazo, Joaquin and Burks, Deborah J and Stojkovic, Miodrag} }