@article {701, title = {CSVS, a crowdsourcing database of the Spanish population genetic variability.}, journal = {Nucleic Acids Res}, volume = {49}, year = {2021}, month = {2021 01 08}, pages = {D1130-D1137}, abstract = {

The knowledge of the genetic variability of the local population is of utmost importance in personalized medicine and has been revealed as a critical factor for the discovery of new disease variants. Here, we present the Collaborative Spanish Variability Server (CSVS), which currently contains more than 2000 genomes and exomes of unrelated Spanish individuals. This database has been generated in a collaborative crowdsourcing effort collecting sequencing data produced by local genomic projects and for other purposes. Sequences have been grouped by ICD10 upper categories. A web interface allows querying the database removing one or more ICD10 categories. In this way, aggregated counts of allele frequencies of the pseudo-control Spanish population can be obtained for diseases belonging to the category removed. Interestingly, in addition to pseudo-control studies, some population studies can be made, as, for example, prevalence of pharmacogenomic variants, etc. In addition, this genomic data has been used to define the first Spanish Genome Reference Panel (SGRP1.0) for imputation. This is the first local repository of variability entirely produced by a crowdsourcing effort and constitutes an example for future initiatives to characterize local variability worldwide. CSVS is also part of the GA4GH Beacon network. CSVS can be accessed at: http://csvs.babelomics.org/.

}, keywords = {Alleles, Chromosome Mapping, Crowdsourcing, Databases, Genetic, Exome, Gene Frequency, Genetic Variation, Genetics, Population, Genome, Human, Genomics, Humans, Internet, Precision Medicine, Software, Spain}, issn = {1362-4962}, doi = {10.1093/nar/gkaa794}, author = {Pe{\~n}a-Chilet, Maria and Rold{\'a}n, Gema and Perez-Florido, Javier and Ortuno, Francisco M and Carmona, Rosario and Aquino, Virginia and L{\'o}pez-L{\'o}pez, Daniel and Loucera, Carlos and Fernandez-Rueda, Jose L and Gallego, Asunci{\'o}n and Garcia-Garcia, Francisco and Gonz{\'a}lez-Neira, Anna and Pita, Guillermo and N{\'u}{\~n}ez-Torres, Roc{\'\i}o and Santoyo-L{\'o}pez, Javier and Ayuso, Carmen and Minguez, Pablo and Avila-Fernandez, Almudena and Corton, Marta and Moreno-Pelayo, Miguel {\'A}ngel and Morin, Mat{\'\i}as and Gallego-Martinez, Alvaro and Lopez-Escamez, Jose A and Borrego, Salud and Anti{\v n}olo, Guillermo and Amigo, Jorge and Salgado-Garrido, Josefa and Pasalodos-Sanchez, Sara and Morte, Beatriz and Carracedo, {\'A}ngel and Alonso, {\'A}ngel and Dopazo, Joaquin} } @article {422, title = {Differential metabolic activity and discovery of therapeutic targets using summarized metabolic pathway models.}, journal = {NPJ Syst Biol Appl}, volume = {5}, year = {2019}, month = {2019}, pages = {7}, abstract = {

In spite of the increasing availability of genomic and transcriptomic data, there is still a gap between the detection of perturbations in gene expression and the understanding of their contribution to the molecular mechanisms that ultimately account for the phenotype studied. Alterations in the metabolism are behind the initiation and progression of many diseases, including cancer. The wealth of available knowledge on metabolic processes can therefore be used to derive mechanistic models that link gene expression perturbations to changes in metabolic activity that provide relevant clues on molecular mechanisms of disease and drug modes of action (MoA). In particular, pathway modules, which recapitulate the main aspects of metabolism, are especially suitable for this type of modeling. We present Metabolizer, a web-based application that offers an intuitive, easy-to-use interactive interface to analyze differences in pathway metabolic module activities that can also be used for class prediction and in silico prediction of knock-out (KO) effects. Moreover, Metabolizer can automatically predict the optimal KO intervention for restoring a diseased phenotype. We provide different types of validations of some of the predictions made by Metabolizer. Metabolizer is a web tool that allows understanding molecular mechanisms of disease or the MoA of drugs within the context of the metabolism by using gene expression measurements. In addition, this tool automatically suggests potential therapeutic targets for individualized therapeutic interventions.

}, keywords = {Computational Biology, Computer Simulation, Drug discovery, Gene Regulatory Networks, Humans, Internet, Metabolic Networks and Pathways, Models, Biological, Neoplasms, Phenotype, Software, Transcriptome}, issn = {2056-7189}, doi = {10.1038/s41540-019-0087-2}, author = {Cubuk, Cankut and Hidalgo, Marta R and Amadoz, Alicia and Rian, Kinza and Salavert, Francisco and Pujana, Miguel A and Mateo, Francesca and Herranz, Carmen and Carbonell-Caballero, Jos{\'e} and Dopazo, Joaquin} } @article {432, title = {ATGC transcriptomics: a web-based application to integrate, explore and analyze de novo transcriptomic data.}, journal = {BMC Bioinformatics}, volume = {18}, year = {2017}, month = {2017 Feb 22}, pages = {121}, abstract = {

BACKGROUND: In the last years, applications based on massively parallelized RNA sequencing (RNA-seq) have become valuable approaches for studying non-model species, e.g., without a fully sequenced genome. RNA-seq is a useful tool for detecting novel transcripts and genetic variations and for evaluating differential gene expression by digital measurements. The large and complex datasets resulting from functional genomic experiments represent a challenge in data processing, management, and analysis. This problem is especially significant for small research groups working with non-model species.

RESULTS: We developed a web-based application, called ATGC transcriptomics, with a flexible and adaptable interface that allows users to work with new generation sequencing (NGS) transcriptomic analysis results using an ontology-driven database. This new application simplifies data exploration, visualization, and integration for a better comprehension of the results.

CONCLUSIONS: ATGC transcriptomics provides access to non-expert computer users and small research groups to a scalable storage option and simple data integration, including database administration and management. The software is freely available under the terms of GNU public license at http://atgcinta.sourceforge.net .

}, keywords = {Animals, Databases, Genetic, Gene Expression Profiling, High-Throughput Nucleotide Sequencing, Internet, Sequence Analysis, RNA, Transcriptome, User-Computer Interface}, issn = {1471-2105}, doi = {10.1186/s12859-017-1494-2}, author = {Gonzalez, Sergio and Clavijo, Bernardo and Rivarola, M{\'a}ximo and Moreno, Patricio and Fernandez, Paula and Dopazo, Joaquin and Paniego, Norma} } @article {387, title = {HGVA: the Human Genome Variation Archive.}, journal = {Nucleic Acids Res}, volume = {45}, year = {2017}, month = {2017 07 03}, pages = {W189-W194}, abstract = {

High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic data for key reference projects in a clean, fast and integrated fashion. HGVA provides an efficient and intuitive web-interface for easy data mining, a comprehensive RESTful API and client libraries in Python, Java and JavaScript for fast programmatic access to its knowledge base. HGVA calculates population frequencies for these projects and enriches their data with variant annotation provided by CellBase, a rich and fast annotation solution. HGVA serves as a proof-of-concept of the genome analysis developments being carried out by the University of Cambridge together with UK{\textquoteright}s 100 000 genomes project and the National Institute for Health Research BioResource Rare-Diseases, in particular, deploying open-source for Computational Biology (OpenCB) software platform for storing and analyzing massive genomic datasets.

}, keywords = {Genetic Variation, Genome, Human, Humans, Internet, Software, User-Computer Interface}, issn = {1362-4962}, doi = {10.1093/nar/gkx445}, url = {https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkx445}, author = {Lopez, Javier and Coll, Jacobo and Haimel, Matthias and Kandasamy, Swaathi and T{\'a}rraga, Joaqu{\'\i}n and Furio-Tari, Pedro and Bari, Wasim and Bleda, Marta and Rueda, Antonio and Gr{\"a}f, Stefan and Rendon, Augusto and Dopazo, Joaquin and Medina, Ignacio} } @article {382, title = {VISMapper: ultra-fast exhaustive cartography of viral insertion sites for gene therapy.}, journal = {BMC Bioinformatics}, volume = {18}, year = {2017}, month = {2017 Sep 20}, pages = {421}, abstract = {

BACKGROUND: The possibility of integrating viral vectors to become a persistent part of the host genome makes them a crucial element of clinical gene therapy. However, viral integration has associated risks, such as the unintentional activation of oncogenes that can result in cancer. Therefore, the analysis of integration sites of retroviral vectors is a crucial step in developing safer vectors for therapeutic use.

RESULTS: Here we present VISMapper, a vector integration site analysis web server, to analyze next-generation sequencing data for retroviral vector integration sites. VISMapper can be found at: http://vismapper.babelomics.org .

CONCLUSIONS: Because it uses novel mapping algorithms VISMapper is remarkably faster than previous available programs. It also provides a useful graphical interface to analyze the integration sites found in the genomic context.

}, keywords = {Base Sequence, Genetic Therapy, Genetic Vectors, High-Throughput Nucleotide Sequencing, Humans, Internet, User-Computer Interface, Virus Integration}, issn = {1471-2105}, doi = {10.1186/s12859-017-1837-z}, author = {Juanes, Jos{\'e} M and Gallego, Asunci{\'o}n and T{\'a}rraga, Joaqu{\'\i}n and Chaves, Felipe J and Marin-Garcia, Pablo and Medina, Ignacio and Arnau, Vicente and Dopazo, Joaquin} } @article {438, title = {Web-based network analysis and visualization using CellMaps.}, journal = {Bioinformatics}, volume = {32}, year = {2016}, month = {2016 10 01}, pages = {3041-3}, abstract = {

UNLABELLED: : CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API.

AVAILABILITY AND IMPLEMENTATION: The application is available at: http://cellmaps.babelomics.org/ and the code can be found in: https://github.com/opencb/cell-maps The client is implemented in JavaScript and the server in C and Java.

CONTACT: jdopazo@cipf.es

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

}, keywords = {Biochemical Phenomena, Internet, Software}, issn = {1367-4811}, doi = {10.1093/bioinformatics/btw332}, author = {Salavert, Francisco and Garc{\'\i}a-Alonso, Luz and S{\'a}nchez, Rub{\'e}n and Alonso, Roberto and Bleda, Marta and Medina, Ignacio and Dopazo, Joaquin} } @article {468, title = {PTMcode v2: a resource for functional associations of post-translational modifications within and between proteins.}, journal = {Nucleic Acids Res}, volume = {43}, year = {2015}, month = {2015 Jan}, pages = {D494-502}, abstract = {

The post-translational regulation of proteins is mainly driven by two molecular events, their modification by several types of moieties and their interaction with other proteins. These two processes are interdependent and together are responsible for the function of the protein in a particular cell state. Several databases focus on the prediction and compilation of protein-protein interactions (PPIs) and no less on the collection and analysis of protein post-translational modifications (PTMs), however, there are no resources that concentrate on describing the regulatory role of PTMs in PPIs. We developed several methods based on residue co-evolution and proximity to predict the functional associations of pairs of PTMs that we apply to modifications in the same protein and between two interacting proteins. In order to make data available for understudied organisms, PTMcode v2 (http://ptmcode.embl.de) includes a new strategy to propagate PTMs from validated modified sites through orthologous proteins. The second release of PTMcode covers 19 eukaryotic species from which we collected more than 300,000 experimentally verified PTMs (>1,300,000 propagated) of 69 types extracting the post-translational regulation of >100,000 proteins and >100,000 interactions. In total, we report 8 million associations of PTMs regulating single proteins and over 9.4 million interplays tuning PPIs.

}, keywords = {Databases, Protein, Internet, Protein Interaction Mapping, Protein Processing, Post-Translational}, issn = {1362-4962}, doi = {10.1093/nar/gku1081}, author = {Minguez, Pablo and Letunic, Ivica and Parca, Luca and Garc{\'\i}a-Alonso, Luz and Dopazo, Joaquin and Huerta-Cepas, Jaime and Bork, Peer} } @article {500, title = {Inferring the functional effect of gene expression changes in signaling pathways.}, journal = {Nucleic Acids Res}, volume = {41}, year = {2013}, month = {2013 Jul}, pages = {W213-7}, abstract = {

Signaling pathways constitute a valuable source of information that allows interpreting the way in which alterations in gene activities affect to particular cell functionalities. There are web tools available that allow viewing and editing pathways, as well as representing experimental data on them. However, few methods aimed to identify the signaling circuits, within a pathway, associated to the biological problem studied exist and none of them provide a convenient graphical web interface. We present PATHiWAYS, a web-based signaling pathway visualization system that infers changes in signaling that affect cell functionality from the measurements of gene expression values in typical expression microarray case-control experiments. A simple probabilistic model of the pathway is used to estimate the probabilities for signal transmission from any receptor to any final effector molecule (taking into account the pathway topology) using for this the individual probabilities of gene product presence/absence inferred from gene expression values. Significant changes in these probabilities allow linking different cell functionalities triggered by the pathway to the biological problem studied. PATHiWAYS is available at: http://pathiways.babelomics.org/.

}, keywords = {Animals, Humans, Internet, Mice, Models, Statistical, Receptors, Cell Surface, Signal Transduction, Software, Transcriptome}, issn = {1362-4962}, doi = {10.1093/nar/gkt451}, author = {Sebasti{\'a}n-Leon, Patricia and Carbonell, Jos{\'e} and Salavert, Francisco and S{\'a}nchez, Rub{\'e}n and Medina, Ignacio and Dopazo, Joaquin} } @article {517, title = {Inferring the regulatory network behind a gene expression experiment.}, journal = {Nucleic Acids Res}, volume = {40}, year = {2012}, month = {2012 Jul}, pages = {W168-72}, abstract = {

Transcription factors (TFs) and miRNAs are the most important dynamic regulators in the control of gene expression in multicellular organisms. These regulatory elements play crucial roles in development, cell cycling and cell signaling, and they have also been associated with many diseases. The Regulatory Network Analysis Tool (RENATO) web server makes the exploration of regulatory networks easy, enabling a better understanding of functional modularity and network integrity under specific perturbations. RENATO is suitable for the analysis of the result of expression profiling experiments. The program analyses lists of genes and search for the regulators compatible with its activation or deactivation. Tests of single enrichment or gene set enrichment allow the selection of the subset of TFs or miRNAs significantly involved in the regulation of the query genes. RENATO also offers an interactive advanced graphical interface that allows exploring the regulatory network found.RENATO is available at: http://renato.bioinfo.cipf.es/.

}, keywords = {Binding Sites, Databases, Genetic, Fanconi Anemia, Gene Regulatory Networks, Internet, MicroRNAs, Software, Transcription Factors, Transcriptome}, issn = {1362-4962}, doi = {10.1093/nar/gks573}, author = {Bleda, Marta and Medina, Ignacio and Alonso, Roberto and De Maria, Alejandro and Salavert, Francisco and Dopazo, Joaquin} } @article {519, title = {SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-coding variants.}, journal = {Nucleic Acids Res}, volume = {40}, year = {2012}, month = {2012 Jan}, pages = {D935-9}, abstract = {

Single nucleotide variants (SNVs) are, together with copy number variation, the primary source of variation in the human genome and are associated with phenotypic variation such as altered response to drug treatment and susceptibility to disease. Linking structural effects of non-synonymous SNVs to functional outcomes is a major issue in structural bioinformatics. The SNPeffect database (http://snpeffect.switchlab.org) uses sequence- and structure-based bioinformatics tools to predict the effect of protein-coding SNVs on the structural phenotype of proteins. It integrates aggregation prediction (TANGO), amyloid prediction (WALTZ), chaperone-binding prediction (LIMBO) and protein stability analysis (FoldX) for structural phenotyping. Additionally, SNPeffect holds information on affected catalytic sites and a number of post-translational modifications. The database contains all known human protein variants from UniProt, but users can now also submit custom protein variants for a SNPeffect analysis, including automated structure modeling. The new meta-analysis application allows plotting correlations between phenotypic features for a user-selected set of variants.

}, keywords = {Databases, Protein, Humans, Internet, Meta-Analysis as Topic, Phenotype, Polymorphism, Single Nucleotide, Protein Conformation, Proteins}, issn = {1362-4962}, doi = {10.1093/nar/gkr996}, author = {De Baets, Greet and Van Durme, Joost and Reumers, Joke and Maurer-Stroh, Sebastian and Vanhee, Peter and Dopazo, Joaquin and Schymkowitz, Joost and Rousseau, Frederic} } @article {523, title = {VARIANT: Command Line, Web service and Web interface for fast and accurate functional characterization of variants found by Next-Generation Sequencing.}, journal = {Nucleic Acids Res}, volume = {40}, year = {2012}, month = {2012 Jul}, pages = {W54-8}, abstract = {

The massive use of Next-Generation Sequencing (NGS) technologies is uncovering an unexpected amount of variability. The functional characterization of such variability, particularly in the most common form of variation found, the Single Nucleotide Variants (SNVs), has become a priority that needs to be addressed in a systematic way. VARIANT (VARIant ANalyis Tool) reports information on the variants found that include consequence type and annotations taken from different databases and repositories (SNPs and variants from dbSNP and 1000 genomes, and disease-related variants from the Genome-Wide Association Study (GWAS) catalog, Online Mendelian Inheritance in Man (OMIM), Catalog of Somatic Mutations in Cancer (COSMIC) mutations, etc). VARIANT also produces a rich variety of annotations that include information on the regulatory (transcription factor or miRNA-binding sites, etc.) or structural roles, or on the selective pressures on the sites affected by the variation. This information allows extending the conventional reports beyond the coding regions and expands the knowledge on the contribution of non-coding or synonymous variants to the phenotype studied. Contrarily to other tools, VARIANT uses a remote database and operates through efficient RESTful Web Services that optimize search and transaction operations. In this way, local problems of installation, update or disk size limitations are overcome without the need of sacrifice speed (thousands of variants are processed per minute). VARIANT is available at: http://variant.bioinfo.cipf.es.

}, keywords = {Databases, Nucleic Acid, Genetic Variation, High-Throughput Nucleotide Sequencing, Internet, Molecular Sequence Annotation, mutation, Polymorphism, Single Nucleotide, Software, User-Computer Interface}, issn = {1362-4962}, doi = {10.1093/nar/gks572}, author = {Medina, Ignacio and De Maria, Alejandro and Bleda, Marta and Salavert, Francisco and Alonso, Roberto and Gonzalez, Cristina Y and Dopazo, Joaquin} } @article {541, title = {myKaryoView: a light-weight client for visualization of genomic data.}, journal = {PLoS One}, volume = {6}, year = {2011}, month = {2011}, pages = {e26345}, abstract = {

The Distributed Annotation System (DAS) is a protocol for easy sharing and integration of biological annotations. In order to visualize feature annotations in a genomic context a client is required. Here we present myKaryoView, a simple light-weight DAS tool for visualization of genomic annotation. myKaryoView has been specifically configured to help analyse data derived from personal genomics, although it can also be used as a generic genome browser visualization. Several well-known data sources are provided to facilitate comparison of known genes and normal variation regions. The navigation experience is enhanced by simultaneous rendering of different levels of detail across chromosomes. A simple interface is provided to allow searches for any SNP, gene or chromosomal region. User-defined DAS data sources may also be added when querying the system. We demonstrate myKaryoView capabilities for adding user-defined sources with a set of genetic profiles of family-related individuals downloaded directly from 23andMe. myKaryoView is a web tool for visualization of genomic data specifically designed for direct-to-consumer genomic data that uses publicly available data distributed throughout the Internet. It does not require data to be held locally and it is capable of rendering any feature as long as it conforms to DAS specifications. Configuration and addition of sources to myKaryoView can be done through the interface. Here we show a proof of principle of myKaryoView{\textquoteright}s ability to display personal genomics data with 23andMe genome data sources. The tool is available at: http://mykaryoview.com.

}, keywords = {Computer Graphics, Databases, Genetic, Genomics, Internet, Molecular Sequence Annotation, User-Computer Interface}, issn = {1932-6203}, doi = {10.1371/journal.pone.0026345}, author = {Jimenez, Rafael C and Salazar, Gustavo A and Gel, Bernat and Dopazo, Joaquin and Mulder, Nicola and Corpas, Manuel} } @article {539, title = {Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing.}, journal = {Nucleic Acids Res}, volume = {39}, year = {2011}, month = {2011 Jul}, pages = {W470-4}, abstract = {

Phylemon 2.0 is a new release of the suite of web tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. It has been designed as a response to the increasing demand of molecular sequence analyses for experts and non-expert users. Phylemon 2.0 has several unique features that differentiates it from other similar web resources: (i) it offers an integrated environment that enables evolutionary analyses, format conversion, file storage and edition of results; (ii) it suggests further analyses, thereby guiding the users through the web server; and (iii) it allows users to design and save phylogenetic pipelines to be used over multiple genes (phylogenomics). Altogether, Phylemon 2.0 integrates a suite of 30 tools covering sequence alignment reconstruction and trimming; tree reconstruction, visualization and manipulation; and evolutionary hypotheses testing.

}, keywords = {Evolution, Molecular, Genomics, Internet, Phylogeny, Sequence Alignment, Software}, issn = {1362-4962}, doi = {10.1093/nar/gkr408}, author = {S{\'a}nchez, Rub{\'e}n and Serra, Fran{\c c}ois and T{\'a}rraga, Joaqu{\'\i}n and Medina, Ignacio and Carbonell, Jos{\'e} and Pulido, Luis and De Maria, Alejandro and Capella-Gut{\'\i}errez, Salvador and Huerta-Cepas, Jaime and Gabald{\'o}n, Toni and Dopazo, Joaquin and Dopazo, Hern{\'a}n} } @article {576, title = {Serial Expression Analysis: a web tool for the analysis of serial gene expression data.}, journal = {Nucleic Acids Res}, volume = {38}, year = {2010}, month = {2010 Jul}, pages = {W239-45}, abstract = {

Serial transcriptomics experiments investigate the dynamics of gene expression changes associated with a quantitative variable such as time or dosage. The statistical analysis of these data implies the study of global and gene-specific expression trends, the identification of significant serial changes, the comparison of expression profiles and the assessment of transcriptional changes in terms of cellular processes. We have created the SEA (Serial Expression Analysis) suite to provide a complete web-based resource for the analysis of serial transcriptomics data. SEA offers five different algorithms based on univariate, multivariate and functional profiling strategies framed within a user-friendly interface and a project-oriented architecture to facilitate the analysis of serial gene expression data sets from different perspectives. SEA is available at sea.bioinfo.cipf.es.

}, keywords = {Algorithms, Gene Expression Profiling, Internet, Kinetics, Linear Models, Oligonucleotide Array Sequence Analysis, Software}, issn = {1362-4962}, doi = {10.1093/nar/gkq488}, author = {Nueda, Maria Jos{\'e} and Carbonell, Jos{\'e} and Medina, Ignacio and Dopazo, Joaquin and Conesa, Ana} } @article {586, title = {SNOW, a web-based tool for the statistical analysis of protein-protein interaction networks.}, journal = {Nucleic Acids Res}, volume = {37}, year = {2009}, month = {2009 Jul}, pages = {W109-14}, abstract = {

Understanding the structure and the dynamics of the complex intercellular network of interactions that contributes to the structure and function of a living cell is one of the main challenges of today{\textquoteright}s biology. SNOW inputs a collection of protein (or gene) identifiers and, by using the interactome as scaffold, draws the connections among them, calculates several relevant network parameters and, as a novelty among the rest of tools of its class, it estimates their statistical significance. The parameters calculated for each node are: connectivity, betweenness and clustering coefficient. It also calculates the number of components, number of bicomponents and articulation points. An interactive network viewer is also available to explore the resulting network. SNOW is available at http://snow.bioinfo.cipf.es.

}, keywords = {Computer Graphics, Data Interpretation, Statistical, Databases, Protein, Humans, Internet, Protein Interaction Mapping, Software}, issn = {1362-4962}, doi = {10.1093/nar/gkp402}, author = {Minguez, Pablo and G{\"o}tz, Stefan and Montaner, David and Al-Shahrour, F{\'a}tima and Dopazo, Joaquin} } @article {593, title = {GEPAS, a web-based tool for microarray data analysis and interpretation.}, journal = {Nucleic Acids Res}, volume = {36}, year = {2008}, month = {2008 Jul 01}, pages = {W308-14}, abstract = {

Gene Expression Profile Analysis Suite (GEPAS) is one of the most complete and extensively used web-based packages for microarray data analysis. During its more than 5 years of activity it has continuously been updated to keep pace with the state-of-the-art in the changing microarray data analysis arena. GEPAS offers diverse analysis options that include well established as well as novel algorithms for normalization, gene selection, class prediction, clustering and functional profiling of the experiment. New options for time-course (or dose-response) experiments, microarray-based class prediction, new clustering methods and new tests for differential expression have been included. The new pipeliner module allows automating the execution of sequential analysis steps by means of a simple but powerful graphic interface. An extensive re-engineering of GEPAS has been carried out which includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. GEPAS is nowadays the most quoted web tool in its field and it is extensively used by researchers of many countries and its records indicate an average usage rate of 500 experiments per day. GEPAS, is available at http://www.gepas.org.

}, keywords = {Computer Graphics, Dose-Response Relationship, Drug, Gene Expression Profiling, Internet, Kinetics, Oligonucleotide Array Sequence Analysis, Software}, issn = {1362-4962}, doi = {10.1093/nar/gkn303}, author = {T{\'a}rraga, Joaqu{\'\i}n and Medina, Ignacio and Carbonell, Jos{\'e} and Huerta-Cepas, Jaime and Minguez, Pablo and Alloza, Eva and Al-Shahrour, F{\'a}tima and Vegas-Azc{\'a}rate, Susana and Goetz, Stefan and Escobar, Pablo and Garcia-Garcia, Francisco and Conesa, Ana and Montaner, David and Dopazo, Joaquin} } @article {595, title = {Interoperability with Moby 1.0--it{\textquoteright}s better than sharing your toothbrush!}, journal = {Brief Bioinform}, volume = {9}, year = {2008}, month = {2008 May}, pages = {220-31}, abstract = {

The BioMoby project was initiated in 2001 from within the model organism database community. It aimed to standardize methodologies to facilitate information exchange and access to analytical resources, using a consensus driven approach. Six years later, the BioMoby development community is pleased to announce the release of the 1.0 version of the interoperability framework, registry Application Programming Interface and supporting Perl and Java code-bases. Together, these provide interoperable access to over 1400 bioinformatics resources worldwide through the BioMoby platform, and this number continues to grow. Here we highlight and discuss the features of BioMoby that make it distinct from other Semantic Web Service and interoperability initiatives, and that have been instrumental to its deployment and use by a wide community of bioinformatics service providers. The standard, client software, and supporting code libraries are all freely available at http://www.biomoby.org/.

}, keywords = {Computational Biology, Database Management Systems, Databases, Factual, Information Storage and Retrieval, Internet, Programming Languages, Systems Integration}, issn = {1477-4054}, doi = {10.1093/bib/bbn003}, author = {Wilkinson, Mark D and Senger, Martin and Kawas, Edward and Bruskiewich, Richard and Gouzy, Jerome and Noirot, Celine and Bardou, Philippe and Ng, Ambrose and Haase, Dirk and Saiz, Enrique de Andres and Wang, Dennis and Gibbons, Frank and Gordon, Paul M K and Sensen, Christoph W and Carrasco, Jose Manuel Rodriguez and Fern{\'a}ndez, Jos{\'e} M and Shen, Lixin and Links, Matthew and Ng, Michael and Opushneva, Nina and Neerincx, Pieter B T and Leunissen, Jack A M and Ernst, Rebecca and Twigger, Simon and Usadel, Bjorn and Good, Benjamin and Wong, Yan and Stein, Lincoln and Crosby, William and Karlsson, Johan and Royo, Romina and P{\'a}rraga, Iv{\'a}n and Ram{\'\i}rez, Sergio and Gelpi, Josep Lluis and Trelles, Oswaldo and Pisano, David G and Jimenez, Natalia and Kerhornou, Arnaud and Rosset, Roman and Zamacola, Leire and T{\'a}rraga, Joaqu{\'\i}n and Huerta-Cepas, Jaime and Carazo, Jose Mar{\'\i}a and Dopazo, Joaquin and Guig{\'o}, Roderic and Navarro, Arcadi and Orozco, Modesto and Valencia, Alfonso and Claros, M Gonzalo and P{\'e}rez, Antonio J and Aldana, Jose and Rojano, M Mar and Fernandez-Santa Cruz, Raul and Navas, Ismael and Schiltz, Gary and Farmer, Andrew and Gessler, Damian and Schoof, Heiko and Groscurth, Andreas} } @article {596, title = {Joint annotation of coding and non-coding single nucleotide polymorphisms and mutations in the SNPeffect and PupaSuite databases.}, journal = {Nucleic Acids Res}, volume = {36}, year = {2008}, month = {2008 Jan}, pages = {D825-9}, abstract = {

Single nucleotide polymorphisms (SNPs) are, together with copy number variation, the primary source of variation in the human genome. SNPs are associated with altered response to drug treatment, susceptibility to disease and other phenotypic variation. Furthermore, during genetic screens for disease-associated mutations in groups of patients and control individuals, the distinction between disease causing mutation and polymorphism is often unclear. Annotation of the functional and structural implications of single nucleotide changes thus provides valuable information to interpret and guide experiments. The SNPeffect and PupaSuite databases are now synchronized to deliver annotations for both non-coding and coding SNP, as well as annotations for the SwissProt set of human disease mutations. In addition, SNPeffect now contains predictions of Tango2: an improved aggregation detector, and Waltz: a novel predictor of amyloid-forming sequences, as well as improved predictors for regions that are recognized by the Hsp70 family of chaperones. The new PupaSuite version incorporates predictions for SNPs in silencers and miRNAs including their targets, as well as additional methods for predicting SNPs in TFBSs and splice sites. Also predictions for mouse and rat genomes have been added. In addition, a PupaSuite web service has been developed to enable data access, programmatically. The combined database holds annotations for 4,965,073 regulatory as well as 133,505 coding human SNPs and 14,935 disease mutations, and phenotypic descriptions of 43,797 human proteins and is accessible via http://snpeffect.vib.be and http://pupasuite.bioinfo.cipf.es/.

}, keywords = {Amino Acid Substitution, Animals, Databases, Genetic, Genetic Diseases, Inborn, HSP70 Heat-Shock Proteins, Humans, Internet, Mice, MicroRNAs, mutation, Polymorphism, Single Nucleotide, Proteins, Rats, RNA Splice Sites, Transcription Factors}, issn = {1362-4962}, doi = {10.1093/nar/gkm979}, author = {Reumers, Joke and Conde, Lucia and Medina, Ignacio and Maurer-Stroh, Sebastian and Van Durme, Joost and Dopazo, Joaquin and Rousseau, Frederic and Schymkowitz, Joost} } @article {603, title = {DBAli tools: mining the protein structure space.}, journal = {Nucleic Acids Res}, volume = {35}, year = {2007}, month = {2007 Jul}, pages = {W393-7}, abstract = {

The DBAli tools use a comprehensive set of structural alignments in the DBAli database to leverage the structural information deposited in the Protein Data Bank (PDB). These tools include (i) the DBAlit program that allows users to input the 3D coordinates of a protein structure for comparison by MAMMOTH against all chains in the PDB; (ii) the AnnoLite and AnnoLyze programs that annotate a target structure based on its stored relationships to other structures; (iii) the ModClus program that clusters structures by sequence and structure similarities; (iv) the ModDom program that identifies domains as recurrent structural fragments and (v) an implementation of the COMPARER method in the SALIGN command in MODELLER that creates a multiple structure alignment for a set of related protein structures. Thus, the DBAli tools, which are freely accessible via the World Wide Web at http://salilab.org/DBAli/, allow users to mine the protein structure space by establishing relationships between protein structures and their functions.

}, keywords = {Algorithms, Amino Acid Sequence, Computational Biology, Data Interpretation, Statistical, Databases, Protein, Internet, Molecular Sequence Data, Protein Conformation, Proteins, Pseudomonas aeruginosa, Sequence Alignment, Sequence Analysis, Protein, Sequence Homology, Amino Acid, Software, Structure-Activity Relationship}, issn = {1362-4962}, doi = {10.1093/nar/gkm236}, author = {Marti-Renom, Marc A and Pieper, Ursula and Madhusudhan, M S and Rossi, Andrea and Eswar, Narayanan and Davis, Fred P and Al-Shahrour, F{\'a}tima and Dopazo, Joaquin and Sali, Andrej} } @article {605, title = {FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments.}, journal = {Nucleic Acids Res}, volume = {35}, year = {2007}, month = {2007 Jul}, pages = {W91-6}, abstract = {

The ultimate goal of any genome-scale experiment is to provide a functional interpretation of the data, relating the available information with the hypotheses that originated the experiment. Thus, functional profiling methods have become essential in diverse scenarios such as microarray experiments, proteomics, etc. We present the FatiGO+, a web-based tool for the functional profiling of genome-scale experiments, specially oriented to the interpretation of microarray experiments. In addition to different functional annotations (gene ontology, KEGG pathways, Interpro motifs, Swissprot keywords and text-mining based bioentities related to diseases and chemical compounds) FatiGO+ includes, as a novelty, regulatory and structural information. The regulatory information used includes predictions of targets for distinct regulatory elements (obtained from the Transfac and CisRed databases). Additionally FatiGO+ uses predictions of target motifs of miRNA to infer which of these can be activated or deactivated in the sample of genes studied. Finally, properties of gene products related to their relative location and connections in the interactome have also been used. Also, enrichment of any of these functional terms can be directly analysed on chromosomal coordinates. FatiGO+ can be found at: http://www.fatigoplus.org and within the Babelomics environment http://www.babelomics.org.

}, keywords = {Amino Acid Motifs, Animals, Binding Sites, Computational Biology, Gene Expression Profiling, Genes, Genomics, Humans, Internet, Oligonucleotide Array Sequence Analysis, Programming Languages, Software, Systems Integration, Transcription Factors}, issn = {1362-4962}, doi = {10.1093/nar/gkm260}, author = {Al-Shahrour, F{\'a}tima and Minguez, Pablo and T{\'a}rraga, Joaqu{\'\i}n and Medina, Ignacio and Alloza, Eva and Montaner, David and Dopazo, Joaquin} } @article {608, title = {ISACGH: a web-based environment for the analysis of Array CGH and gene expression which includes functional profiling.}, journal = {Nucleic Acids Res}, volume = {35}, year = {2007}, month = {2007 Jul}, pages = {W81-5}, abstract = {

We present the ISACGH, a web-based system that allows for the combination of genomic data with gene expression values and provides different options for functional profiling of the regions found. Several visualization options offer a convenient representation of the results. Different efficient methods for accurate estimation of genomic copy number from array-CGH hybridization data have been included in the program. Moreover, the connection to the gene expression analysis package GEPAS allows the use of different facilities for data pre-processing and analysis. A DAS server allows exporting the results to the Ensembl viewer where contextual genomic information can be obtained. The program is freely available at: http://isacgh.bioinfo.cipf.es or within http://www.gepas.org.

}, keywords = {Animals, Cluster Analysis, Computational Biology, Computer Graphics, Gene Expression Profiling, Humans, Internet, Models, Genetic, Nucleic Acid Hybridization, Oligonucleotide Array Sequence Analysis, Programming Languages, Software, Systems Integration, User-Computer Interface}, issn = {1362-4962}, doi = {10.1093/nar/gkm257}, author = {Conde, Lucia and Montaner, David and Burguet-Castell, Jordi and T{\'a}rraga, Joaqu{\'\i}n and Medina, Ignacio and Al-Shahrour, F{\'a}tima and Dopazo, Joaquin} }