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Setting the problem in context:
The transition to precision medicine

Intuitive |dentification of Decisions and
Based on trial probabilistic actions based
and error patterns on knowledge

Intuitive Medicine Empirical Medicine Systems Medicine

Tomorrow

Molecular biomarkers

Genomic biomarkers

Mechanistic biomarkers

Precision medicine is based on a better knowledge of phenotype-genotype relationships.
This ultimately involves the knowledge of disease and drug action mechanisms

Requires of a better way of defining diseases by introducing genomic technologies in the
diagnostic procedures and treatment decisions




Single-gene biomarkers are the result of
probabilistic associations and have a clear
clinical impact

http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm

Most “personalized” therapies are based on this
type of biomarkers



Changes in five-year survival rate by using
single-gene biomarkers
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Despite most biomarkers used are single
gene variants, most human genetic diseases
(and almost all traits) have a modular nature

« Conventional single-gene biomarkers have a demonstrated clinical utility.
However, their success is purely probabilistic, often modest and frequently
lack any mechanistic anchoring to the fundamental cellular processes
responsible for the disease or therapeutic response.

 Modular nature of genetic diseases: Causative genes for the same or
phenotypically similar diseases may generally reside in the same biological
module, either a protein complex (Lage et al, 2007), a sub-network of protein
interactions (Lim et al, 2006) , or a pathway (Wood et al, 2007)
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There are exceptions: MammaPrint, an
example of successful breast cancer decision
support test based on a multigenic biomarker

Gene expression profiling predicts
clinical outcome of breast cancer
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Enabling personalized cancer medicine
through analysis of gene-expression patterns

Larn ) wan ¥ Vs /'S & Rond S rmarch' 4

Therapies for pathents with cancer have changed gradually over the past decadie, movisg away Som Se
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The strength of this approach is that it is unbiased: there are
no assumptions about which genes are likely to be involved in
the process of interest. For example, in a data-driven study of
the prognosis of patients with breast cancer, little was known
about the function of 15 of the 70 genes that were found to
constitute a prognostic gene-expression signature®. A
drawback of this approach is that the outcome relies solely on
the quality of the data (and the samples).

By contrast, using the knowledge-driven approach, genes that
are thought to be relevant to a particular cancer trait are
selected on the basis of the scientific literature.
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Change in the paradigm

MammaPrint and other multigenic
biomarkers: bottom up, from genes
to functions that define one (or
several) biological modules.

Models of cell functionality:
top-down mechanism-based
biomarkers, from biological
modules to genes



Two problems: defining
functional modules and
modeling their behavior

Definition

. Gene ontology:
- - descriptive;
unstructured
functional labels

Interactome:
relationships among
components but
unknown function

Pathways:
“eiia-:o:oio=r: o relationships among
P = components and
their functional roles

Behavior

Enrichment methods. GO, etc. (simple
statistical tests). No information on how
components relate among them

Connectivity models. Protein-protein, protein-
DNA and protein-small molecule interactions
(tests on network properties). No information
the functional roles of the components

Mathematical models. Kinetic models
including stoichiometry, balancing reactions, etc.

Computational models. Models of signalling
pathways, metabolic pathways, regulatory
pathways, etc. (executable models)



Defining the module:

Pathways: maps of cell activity
(in sickness and in health)
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Defining pathway activity

We first need a map: pathways are defined in different repositories (KEGG,
Reactome, Biocarta, disease maps, etc.)

What pathway level makes a real biological meaning?

Gene sub-pathway pathway

Enrichment methods

s T e yosmi (pathway-level): Different
Il N | and often opposite cell
B © o AN i i M e behaviors are triggered by
Py the same pathway.
N e E.g.: death and survival
= o Y e Death
T - Survival
= . ' Sub-pathway
(elementary circuit)
Gene level: The same gene can trigger different (and connects stimulus to

often opposite) responses, depending on the stimulus response



Decomposition of a pathway
Into their elementary circuits
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How realistic are models of
pathway activity?

RESEARC
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Signaling pathway models as biomarkers:
Patient-specific simulations of JNK activity predict
the survival of neuroblastoma patients

Dirk Fey," Melinda Halasz,' Daniel Dreidax,” Sean P. Kennedy,' Jordan F. Hastings,”
Nora Rauch,' Amaya Garcia Munoz,' Ruth Pilkington,” Matthias Fischer,**®
Frank Westermann,” Walter Koich,' ™ Boris N. Kholodenko,'”** David R. Croucher'***

Signaling pathways control celf fale decisions that ulimately determine the behavior of cancer cells,
Therefore, the dynamics of pathway acivity may contain prognostically relevant infarmation different from
that contained in the static nadure of other types of biomarkers. To nvestigste this hypothesis, we char-
acierized the network Mat reguiated stress signaling by the c-Jun N-terminal kinase (JNK) pathway in
neurcbiastoma cells, We genorated an experimantally calibratod and validated computational model of
this network and used the model 10 exract prognastic information from neuroblastoma patient-specid

of JNK activation. Switchdike JNK activation modiades cell death by apoptosis. An inabiiey to
Inktiate switch-ike JNK 1in the sim B was signifs with poor overadl survival
for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simu-
latiors of JNK activation could stratity patients. Furthermore, our analysis demonstrated that extracting
Iinformation about a signaling patiway to develop a prognostically usetul model requires understanding of
ot only > s and sciated changes in the abundance or activity of the components but
#iso how those changes affect pathway dynamics,
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Beyond static biomarkers—The activity
of signalling networks as an alternate

biomarker?

Fey et al., Sci. Signal. 8, ral30 (2015).

Inability of JNK activation (that mediates
apoptosis) is associated to bad prognostic,
irrespective of MYCN amplification status
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Fig. 1. Using network descriptors of signaling pathway activation potential to predict patient response. After construction of a com-
putational model based on the validated network topology and that reproduces the signaling pathway dynamics, the model can be used

to identify network descriptors, such as the Hill coefficient, that are calculated from the dynamic simulation of the activation of a signaling
pathway. These in silico biomarkers cannot be directly measured.



Modeling signaling pathways with
signal propagation models
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High throughput estimation of functional cell activities reveals
disease mechanisms and predicts relevant clinical outcomes
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Signal propagation models are
mechanistic

wrw linpact janrnalecam/ oncotarget/ Oncotarget, Advance Publications 2016

High throughput estimation of functional cell activities reveals
disease mechanisms and predicts relevant clinical outcomes
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Raw data

~.

Gene expression data are transformed
into signal activity intensities

Cases / controls

Ps1 344 344 4556 667 88
Ps2 543 67 88 90 12 36
Ps3 36 833 78 38 99 00
Ps4 59 73 336 677 00 31
Ps1 344 344 4556 667 88
Ps2 543 67 88 90 12 36
Ps3 36 833 78 38 99 00
Ps4 59 73 336 677 00 31

QPCases / controls

Ps1 344 344 4556 667 88
Ps2 543 67 88 90 12 36
Ps3 36 833 78 38 99 00
Ps4 59 73 336 677 00 31
Ps1 344 344 4556 667 88
Ps2 543 67 88 90 12 36
Ps3 36 833 78 38 99 00
Ps4 59 73 336 677 00 31

Normalized gen

7~ Circuits within "\

pathways

—

Circuits

Cases / controls

Ps1 344 344 4556 667 88
Ps2 543 67 88 90 12 36
Ps3 36 833 78 38 99 00
Ps4 59 73 336 677 00 31
Ps1 344 344 4556 667 88
Ps2 543 67 88 90 12 36

A simple transformation of raw data (normalization) and an algorithm for
signal propagation results in accurate estimations of circuit activities.

The same concept that MammaPrint,

ri5k=ﬂgene1; gene,, ... gene70) ’

but based on biological knowledge, is used here to estimate cell S
functional activity



Models of signaling activity provide
high-throughput estimations of intensity
activation of cell functions from gene
expression measurements

#  With Signaling models, the intensity

Some (not all) conventional

cell function can be —— \ at which the whole repertoire of cell
studied, one at a time, in functions is triggered can be
individual assays measured in only one individual
R el experiment
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Hypothesis: the intensity at which functions are triggered
by the signaling system of the cell is more related to
phenotypes than the intensity of gene expression



Signaling activity trigger cell functions
directly related to cancer progression
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Hidalgo et al., 2017 Oncotarget

DNA replication function is a construct: the activity is inferred not measured




Actually, signal activity triggers
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The inferred function activity (mechanistic
biomarker) is more correlated to survival
than the activity of any gene (conventional

biomarker) in the circuit
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Different cancer use different
gene expression programs to
activate the same functions

P53 signaling pathway
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Mechanistic models and causality

An interesting property of mechanistic models is that they can be used
to predict the potential consequences that perturbations (KOs, inhibitions,
mutations or changes in the expression) of the proteins that compose the
pathway can have over the individual circuits that trigger cell actions or
the production of metabolites. Thus, changes in cell activity can be linked
to changes in gene activity/integrity by means of a causal relationship.

By simulating changes of gene expression/activity it is easy to:

« Directly study of the consequences of induced gene over-expressions
or KOs
« Carry out reverse studies of genes that need to be perturbed to change
cell functionalities, such as:
« Reverting the “normal” functional status of a cell
« Selectively kill diseased cells without affecting normal cells
« Studying the effect of mutations
« Etc.



Causal effect of an intervention

We can inhibit EGFR (target of Afanatib) by
reducing its activity value (0.56 in cancer).
Absolute KO value =0 e N
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Estrogen signaling pathway http://pathact.babelomics.org/



Model validation with massive KOs (1)

The activity of some signaling circuits is correlated with cell survival

Survival data from Achilles cell line KOs (Broad Institute) can be
compared to the change in circuit activities predicted by the model

= Onco-circuit Tumor suppressor circuit

> ;

I=

-

7p]

©

o

%))

o

o

&)

=

.. ]| Repression of apoptosis Activation of apoptosis
Functions: o : : : : :
Activation of proliferation Repression of proliferation

Essential circuits: once found, other ways of deactivating these circuits
can be find, opening the door to knowledge-based target discovery



Model validation with massive KOs (2)

Cell survival

L)
In modules known to be

o associated to cell survival Achilles | 9

Circuit activity e @

Circuit activity

0 a e 9 @ @ @ with gene KO

(6 8 Prediction of other gene targets, whose inhibition
G (modeled KO) deactivate these circuits and
consequently decrease cell viability

]‘ Potential target (inhibition of circuit activity)



An example of KO prediction

Pyrimidine degradation pathway was predicted to be an onco-module in gastric
cancer cell lines. Predicted genes that switch the pathway off are DPYD, DPYS
(confirmed in Achilles) and UPB1 (not present in Achilles)

Metabolizer Metaboic Mad

Al lBZt 1 MOOO4S, CIXORS: Pyrimsbdine degradation

(@I ¢ ;’q»_.&——ﬂﬁ})@—u{d;qc-}———“ﬁpb



Cell proliferation

Prediction of gene essentiality from
metabolic module essentiality

Pyrimidine degradation pathway was Cancer Research
predicted to be an onco-module in

gastric cancer cell lines. Predicted

genes that switch the pathway off are

DPYD, DPYS (confirmed in Achilles) Gene expression integration into pathway modules
and UPB1 reveals a pan-cancer metabolic landscape

Advanced Search

Caniast Cubuk, Marta R MHcfalgo, Alica Amadoz, Miguel Angel Pujana, Francesca Mateo, Carmen Herranz
Jose Carbonell-Caballero, and Joaguin Dopazo

AGS cell line DOI: 10.1158/0008-5472 CAN-17-2705 R
(gastric adenocarcinoma)
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Disecting cell behavior at Single Cell
level with mechanistic models

Published online 25 June 2020 NAR Cancer, 2020, Vol. 2, No. 2 1
doi: 10.1093/narcan/zcaa0ll

Mechanistic models of signaling pathways
deconvolute the glioblastoma single-cell functional
landscape
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Disecting cell behavior at Single
Cell level with mechanistic models

Single-cell RNA-seq analysis of 3589 individual cells including
glioblastoma cells and other surrounding and infiltrating cells .

TSNE pathways with Drimpute imputated genes
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O Different cell types can be
distinghised according to their
functional profiles.

L Cancer cells actually define
a heterogeneous subpopulation
with 3 clusters

= Neoplastic cluster 1
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Different functional strategies
across different cancer cells can
be discovered




Disecting drug response at
single cell level

Bevacizumab (All)
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Drug effect can be simulated and individual cell-level
responses enables the study of strategies to evade
the drug and allows suggesting complementary drugs
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ML to predict gene essentiality in
cancer cell lines through their
causal effect on signaling

hhhhhhhhhhhhhhhhhhh

cL1 » ﬁ The Achilles
- I experiment: massive
| L KO of cell lines with
CT2 e
e CRISP-R -> cell
CT3 proliferation score

Training set: Version 7 (19 Q3)
contains 618 cell lines belonging to 28
different cancer types.

CL628

Data source: https://depmap.org/portal/download/



Prediction of the effect of
KOs on cell survival

[ Circuits within \ KOl
pathways
KO,

C: Ko,
Cp oo
e
= C; C,
Cy &
Cly
® ™
C,
C,
C:1098

Ensemble and stacking of classifiers (decision
trees) with Bayesian hyper-parameter
optimization, using geometric mean that
capture parameter imbalances

5

Lung cancer cell
lines:

6751 KOs. Vectors of
1098 circuits to
predict a binary value
(unbalanced: only
10% KOs kill the cell)




General prediction precision

lung_cancer
brain_cancer
pancreatic_cancer
head_and_neck_cancer
ovarian_cancer
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Precision measured by Leaving One Cell line Preisson Recall AU ()

Out (LOCO)

Extreme Gradient Boosting (XGB) is more The more samples to train the
precise than Explainable Boosting Machine better the result

(EBM), but lacks a clear interpretability.



Prediction of the effect of a KO in a new
cell line of the same cancer type

Receiver operating characteristic Precision-Recall curve: AP=0.92

The predictor trained with Achilles v1 cell lines predict the effect or KOs in
Achilles v2 cell lines
NB: essential genes are not conserved across cell lines



Most relevant circuits for the predictor

SHAP is used for
obtaining
relevancies.

As expected, the cell
cycle pathway is the
most relevant in
defining cell survival.
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Different breast
cancer cell lines in
which true positives
(blue), false
negatives (green)
and false positives
(red) are depicted.
The number of true
positives among the
first genes ranked by
predicted lethality is
considerable.



Mutations as perturbations

SCIENTIFIC
REPORTS

natureresearch

Using mechanistic models for the
clinical interpretation of complex
genomic variation

Maria Pefia-Chilet', Marina Esteban-Medina®, Matias M. Falco?, Kinza Rian?,
Marta R. Hidalgo®, Carlos Loucera () & Joaquin Dopazo (H**

The sustained generation of genomic data in the last decade has increased the knowledge on the causal
mutations of a large number of diseases, especially for highly penetrant Mendelian diseases, typically
caused by a unique or a few genes. However, the discovery of causal genes in complex diseases has
been far less successful. Many complex diseases are actually a consequence of the failure of complex
biological modules, composed by interrelated proteins, which can happen in many different ways,
which conferring a multigenic nature to the condition that can hardly be attributed to one or a few
genes. We present a mechanistic model, Hipathia, implemented in a web server that allows estimating
the effect that mutations, or changes in the expression of genes, have over the whole system of

human signaling and the corresponding functional consequences. We show several use cases where we
demonstrate how different the ultimate impact of mutations with similar loss-of-function potential can
be and how the potential pathological role of a damaged gene can be inferred within the context of a
signaling network. The use of systems biology-based approaches, such as mechanistic models, allows
estimating the potential impact of loss-of-function mutations occurring in proteins that are part of
complex biological interaction networks, such as signaling pathways. This holistic approach provides an
elegant alternative to gene-centric approaches that can open new avenues in the interpretation of the
genomic variability in complex diseases.

Mutations can be
understood as
perturbations of the
system and the
consequences can be
predicted by the model.
Some LoF mutations can
have irrelevant or null
effects and other can affect
to many critical cell
functions, depending on
the relationship of the
mutated protein with other
proteins and their activity



Understanding pathologic variation in
complex diseases (an example with diabetes)

E source

A Systems Genetics Approach Identifies Genes
and Pathways for Type 2 Diabetes in Human Islets
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Rap1 signaling pathway: PRKCI PARD6A PARD3
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A total of 30 signaling circuits trigger
inflammation. We used data on T2D to focus
on those circuits specifically related with the
disease
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FDR-
. Log Fold P- . . .
Circuit 5 t adj. p- | Function (Uniprot)
Change value
value
Rapl signaling pathway: PRKCI PARD6A | 0.001003 | 3.83581 | 0.00029 | 0.00892 | Inflammatory response, Cell cycle, Cell
PARD3 division, Differentiation
NF-kappa B signaling pathway: CCL19 0.01209 | 3.37450 | 0.00128 | 0.01676 | Inflammatory response. Chemotaxis
NF-kappa B signaling pathway: CCL21 0.02025 | 3.28701 | 0.00167 | 0.01676 | Inflammatory response. Chemotaxis
NF-kappa B signaling pathway: CCL19
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NF-kappa B signaling pathway: CCL21




LoF mutations with an effect on
signaling similar to the disease

Rap1 signaling pathway: PRKCI PARD6A PARD3
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Terra incognita: beyond the
modelizable part of the genome

Mechanistic models rely on biological knowledge:
pathways that describe the functional interplay of
molecules in the cell, and how cells

Currently,
only one
third of the
REACTOME genome can
be modelled

Causal relationships gene activity/integrity to effect cannot be modelled
and extended beyond all the pathway information available



The obtention of biological
knowledge Is a slow process

Pathways represent the current biological knowledge with arrows, that account
for functional relationships, which connect nodes, that represent molecules
(proteins or others)

The generation of these “arrows” requires years of laboratory work by
formulating and testing specific hypothesis on particular relationships between
molecules.



But... would it be possible to use
machine learning to generate
biological knowledge from data?
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Learning biological
knowledge from the data

Samples
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Curse of dimensionality
b ' Learning biological knowledge from the data is
& currently quite complex.
—  Knowledge-based dimensionality reduction
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possible causal relationships other more

sophisticated models for causality or
simply experimental validations are
affordable



Systematic drug repositioning in Rare Diseases
(Project funded by FBBVA)

BEVA =

...which can also have
complex Disease
Mechanisms
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ML (Sparse Variational Gausian Process B relevant

- SVGP) is used to detect the influence [ Receptor

of target of known drugs over Q e
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Why repurposing drugs in rare diseases?

* »
w ™ iy Y ¥

¥: furorDis  RDs affect to less than 1 among 2000 individuals.

Y\ RARE DISEASES EUROPE

There are more than 7000 different RDs.
Globally, RDs affect to 6-8%b of the European population (1 out of 12).

. ) — \«-:f-“z'\"':f, ‘a\
80%b genetic basis. % =

Only treatments available for 400 RDs.
Pharma companies do not invest in RDs (very small, heterogeneous and
fragmented market where investments are difficult to recover

Advantages of drug repurposing:

s & 4°

Already registered Known security profile Known mechanism
of action



Drug repositioning in Rare diseases

Learning from the data what target(s) affect(s) to
RD hallmarks/symptoms
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Biological knowledge can systematically
be learned from data

* Deriving comprehensive disease pathways and building from them %

mechanistic models for a subset of about 100 RDs that have at least 3 genes
within known signaling and metabolic pathways

* Finding therapeutic targets that revert the disease hallmarks modeled to the
healthy status or that alleviate disease symptoms and, among these we will p
pay especial attention to genes that are already targets of drugs in other °
diseases.

. ] ] BMC Bioinformatics
So far Fanconi anemia, Juvenile

arthritis and familiar melanoma RESSARCH ARTICLE kol
have been modeled. Exploring the druggable space around the "’

Fanconi anemia pathway using machine
learning and mechanistic models

Aim:

Demonstrate that ML R
can help to generate

biological knowledge in

an “industrial” manner.

Keywords
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Two drugs predicted as
repurposable were validated

DRUGID DRUG NAME SYMBOL ACTIONS |

EMC BoMomTetics DB01196 Estramustine MAP1A antagonist
RESEARCH ARTICLE Open Access . .
Exploring the druggable space around the g‘_'{ DB00041 Aldesleukin IL2RG agonist
Fanconi anemia pathway using machine - Foreskin
| i d hanisti del 2 ’
.ea"‘" ng a<n, A ,ams s DB10772 keratinocyte TGFBR2 agonist
o (neonatal)
oot ebelotlent hef Pafine- : ‘ positive allosteric
e rescr g o g plc DB00186 Lorazepam GABRA1l
B T st o b i st i modulator
o e e == ositive allosteric
o e s b DB00228 Enflurane GABRA1 P
s oyt (o RN modulator
DB00317 Gefitinib EGFR antagonist
DB08916 Afatinib EGFR antagonist
Lapatinib EGFR antagonist
CLINICAL CANCER
RESEARCH Tazarotene RARG agonist
: S Dasatinib EPHA2 antagonist
S::znél;sggr/\fanmb Show Potential Efficacy for Fanconi Anemia—Related Head and I Regora fenib EPHA2 inhibitor
EZSJ'.“?‘.?’L‘Z"‘ZJ.“.’.’.?T”.Z"?!S5;‘;.'7;1’.2‘;,’.".’,’; T oL S B DO v I et T Sucralfate EGF2 agonist, inducer

Niacin HCAR2 agonist
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The Disease maps
consortium: expanding drug
repurposing to COVID19

SCIENTIFIC DATAR:: | weee
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Researchery around the world join forces to of the virus-
host interactions alming to combat the cause of the ov\geu\g pamhmu

Innate immune response Adaptive immune response

* Thelpers cells Th1/Th17 are
engage.

* IgA, IgM and IgG are detectable
within 2 weeks after infection.

* Lymphopenia may be related to

\_ bone marrow suppression. )

Delayed or supressed type | IFN
response.

Hyperinflammatory response and
cytokine storm

Influx of activated neutrophils
and inflammatory macrophages. /




The COVID-19 drugg
space
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A version of hipathia specific
for the COVID-19 Disease map

IEI o Y
ﬁ CoV-HiPathia

Covid19 pathway interpretation and analysis

MAIN FEATURES -
- e
An interactive webtool for mechanistic e = =
pathway analysis of signaling gene ; ” —
networks related to COVID-19 e e o - S
High-throughput estimation of functional ® R\ e X gl

cell activities

Accessible and interactive web tool

in silico simulations on transcriptomics
data s -2
Analysis of annotated Activity Flow maps R = Elagn
related to COVID-19 to predict clinical -
outcomes. T —

TIE T THE

http://hipathia.babelomics.org/covid19/



The real transition to precision medicine

personalization

Decisions and
actions based
on knowledge

Intuitive Medicine Empirical Medicine Precision Medicine

Tomorrow
T

The use of new algorithms that enable the transformation of genomic
measurements into cell functionality measurements that account for
disease mechanisms and for drug mechanisms of action will ultimately
allow the real transition from today’s empirical medicine to precision
medicine and provide an increasingly personalized medicine




The hipathia algorithm is available as a
web interface, as well as bioconductor
and cytoscape applications
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http://apps.cytoscape.org/apps/cypathia
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